परीक्षणात्मक शोध की रूपरेखाएँ - Experimental Research Frameworks
परीक्षणात्मक शोध की रूपरेखाएँ - Experimental Research Frameworks
शोध की रूपरेखा शोधकर्ता के लिए अत्यंत महत्वपूर्ण होती है। एक सुविकसित रूपरेखा अन्वेषणों को नियंत्रित करने के लिए रूपरेखा और नीति प्रस्तुत करती है और समस्या अथवा उपकल्पना द्वारा किए प्रश्नों के विश्वसनीय उत्तर प्रस्तुत करती है। रूपरेखा की उपयुक्तता का निर्धारण समस्या की प्रकृति के द्वारा ही किया जाता है।
परीक्षणात्मक रूपरेखाओं के विश्लेषण से पूर्व इसमें उपयोग किए जाने वाले प्रतीकों और शब्दों को जान लेना अत्यंत आवश्यक है -
• X स्वतंत्र परिवर्ती को प्रदर्शित करता है, जिसमें शोधकर्ता द्वारा बदलाव किया जाता है इसे परीक्षणात्मक परिवर्ती अथवा उपचार परिवर्ती भी कहा जाता हैं।
• Y आश्रित परिवर्ती के मापन को प्रदर्शित करता है। Y आश्रित परिवर्ती को स्वतंत्र परिवर्ती X के बदलाव से पूर्व प्रदर्शित करता है। सामान्य तौर पर, यह परीक्षणात्मक उपचार से पूर्व दिया जानेवाला एक प्रकार का पूर्व परीक्षण है। Y, स्वतंत्र परिवर्ती X की बदलाव के उपरांत आश्रित परिवर्ती को प्रदर्शित करता है। यह सामान्यत: परीक्षण बाद का उपचार है जिसे विषयों (परीक्षण किए जाने वाले व्यक्ति) को परीक्षणात्मक उपचार के उपरांत दिया जाता है।
• R परीक्षण समूहों के लिए विषयों के ऐच्छिक निर्धारण और समूहों के लिए उपचारों के ऐच्छिक निर्धारण को प्रदर्शित करता हैं।
• E समूह परीक्षण समूह को प्रदर्शित करता है अर्थात समूह जिसे स्वतंत्र परिवर्ती उपचार दिया जाता है।
• C समूह नियंत्रण समूहको प्रदर्शित करता है अर्थात वह समूह जिसे परीक्षण उपचार नहीं दिया जाता है।
• S परीक्षण में इस्तेमाल किए जाने वाले विषय अथवा प्रतिभागी को प्रदर्शित करता है।
अनेक लेखकों ने परीक्षणात्मक रूपरेखा को कुछ श्रेणियों में विभाजित किया है -
• परीक्षण पूर्व रूपरेखा
• वास्तविक परीक्षण रूपरेखा
• अर्द्ध-परीक्षण रूपरेखा
डोनाल्ड एरी एवं अन्य (1985) ने इसमें कुछ अन्य श्रेणियाँ सम्मिलित की हैं
• तथ्यगत/कारक रूपरेखा
• समय श्रृंखला रूपरेखा
उक्त श्रेणियों की विभिन्न रूपरेखाओं में से प्रमुख रूपरेखाओं को निम्नानुसार प्रस्तुत किया जा रहा है
परीक्षण-पूर्व रूपरेखा
परीक्षण-पूर्व रूपरेखाओं के रूप में विभाजित दो रूपरेखाएँ बाह्य परिवर्तियों के लिए न्यूनतम नियंत्रण प्रस्तुत करती हैं ये रूपरेखाएँ ज्यादा दृढ़ता से नियंत्रित रूपरेखाओं के लाभों को समझाने में मदद करती है, जिनका उल्लेख बाद में किया गया है -
पहली रूपरेखा एक समूह परीक्षण - पूर्व परीक्षण पश्चात रूपरेखा
जब इस रूपरेखा का इस्तेमाल किया जाता है तो आश्रित परिवर्ती का मापन स्वतंत्र परिवर्ती अथवा उपचार के इस्तेमाल से पूर्व अथवा उसके अंत के उपरांत किया जाता है और उसके पश्चात पुन: किया जाता है। सामान्यतया एक समूह रूपरेखा में तीन चरण होते है। पहला, आश्रित परिवर्ती के मापन के लिए परीक्षण-पूर्व उपचार, दूसराविषय को परीक्षण उपचार X देना और तीसरा, परीक्षण पश्चात उपचार देना और पुन: निर्भर परिवर्ती का मापन करना।
परीक्षण उपचार के इस्तेमाल के अंतरों का निर्धारण फिर परीक्षण-पूर्व और परीक्षण पश्चात अंकों की तुलना से किया जाता है।
परीक्षण-पूर्व Y1
स्वतंत्र परिवर्ती X
परीक्षण पश्चात Y2
पहली रूपरेखा एक समूह परीक्षण पूर्व परीक्षण पश्चात रूपरेखा
इस रूपरेखा के इस्तेमाल को प्रदर्शित करने के लिए मान लेते हैं कि विद्यार्थियों के लिए सामाजिक कार्य में किसी विशेष स्व-निर्देशी सामग्री की प्रभाविता का मूल्यांकन किया जा रहा हैं। इस कार्य को करने के लिए यह तरीका अपनाया जाएगा।
शैक्षिक सत्र के प्रारम्भ में, विद्यार्थियों को एक मानकीकृत परीक्षण दिया जाता है जो पाठ्यक्रम के उद्देश्यों का अच्छे तरीके से मापन करता है जिसके उपरांत दूरस्थशिक्षण स्व-निर्देशी सामग्री देता है। वर्ष के अंत में, विद्यार्थियों को दोबारा मानकीकृत परीक्षण दिया जाता है। दोनों परीक्षणों के अंकों की तुलना से पता चलता है कि स्व-निर्देशी सामग्री से किस प्रकार का अंतर आया है।
संक्षेप में, पहली रूपरेखा की संस्तुति कम ही की जाती है। बिना नियंत्रण समूह के तुलनाकरना संभव नहीं होता है। एक समूह रूपरेखा में प्राप्त परिणाम मूल रूप से समीक्षा करने योग्य नहीं होते हैं। परीक्षण के परिणाम विश्वसनीय हो सकते हैं यदि एक तुलना समूहअर्थात नियंत्रण समूह हो जिसे स्व निर्देश साम्रगी नहीं दी गई हो।
दूसरी रूपरेखा स्थैतिक समूह तुलना
दूसरी रूपरेखा दो अथवा अंतिम समूहों का इस्तेमाल करती है जिनमें से सिर्फ एक को परीक्षण उपचार दिया जाता है। समूहों को सभी सम्बन्धित पहलुओं मेंबराबर माना जाता है। वे सिर्फ X के लिए उदभासन में अलग होते हैं। इस रूपरेखा का इस्तेमाल कई बार सामाजिक शोध में किया जाता है। उदाहरण के लिए, नई विधि से पढ़ाए गए प्रौढ़ शिक्षार्थियों की उपलब्धियों की तुलना पारंपरिक विधि द्वारा पढ़ाए गए समान कक्षा के विद्यार्थियों से की जाती है।
दूसरी रूपरेखा में नियंत्रण समूह होते हैं जो तुलना को संभव बनाते हैं जिसकी वैज्ञानिकविश्वास के लिए जरूरत होती है। यदि परीक्षण समूह Y, मापन के लिए उपयुक्त हो तो शोधकर्ता को अपने परिणाम पर अधिक विश्वास होता है कि अन्तर परीक्षण उपचार के कारण है।
दूसरी रूपरेखा स्थैतिक समूह तुलना
वास्तविक परीक्षण रूपरेखा
'वास्तविक परीक्षण' रूपरेखा की तीन रूपरेखाएँ हैं क्योंकि वे नियंत्रण करती हैं।
• पहली, विषयों का समूहों में ऐच्छिक निर्धारण,
• दूसरी समूहों के लिए उपचार का ऐच्छिक निर्धारण और
• तीसरी, परीक्षण पश्चात सभी समूह
तीसरी रूपरेखा- ऐच्छिककृत विषय केवल परीक्षण पश्चात नियंत्रण समूह रूपरेखा
इस विशेष रूपरेखा के लिए दो समूहों की जरूरत होती है जिनमें विषय का ऐच्छिक रूप से निर्धारण किया जाता है और प्रत्येक समूह को अलग स्थिति में रखा जाता है। किसी पूर्व परीक्षण का इस्तेमाल नहीं किया जाता है। सभी संभावित बाह्य परिवर्तियों को नियंत्रित करने का काम ऐच्छिकीकरण करता है। इसका यह अभिप्राय नहीं है कि ऐच्छिकीकरण प्रक्रियाएँ (जैसे- सिक्का उछालना) बाह्य परिवर्तियों जैसे IQ अथवा आयु को निकाल देती है जो आश्रित परिवर्ती को प्रभावित कर सकते हैं अथवा उनकी उपस्थिति को नियंत्रित कर सकते हैं। ये बाह्य परिवर्ती अब भी जांच को प्रभावित करते हैं लेकिन अब, E के व्यक्तिगत गुणों की अपेक्षा संयोग के नियम कार्य करते हैं। वास्तव में, जितनी अधिक संख्या में विषय का इस्तेमाल किया जाता है समूहों के उतने ही समान होने की संभावना बनी रहती है।
विषयों को समूहों में विभाजित करने के उपरांत सिर्फ परीक्षण समूह को परीक्षणात्मक उपचार दिया जाता है। अन्यथा दूसरे सभी संदर्भों में दोनों समूह समतुल्य रहते हैं। दोनों समूहों के सदस्यों का फिर आश्रित परिवर्ती Y, के लिए मापन किया जाता है। X के प्रभाव को निर्धारित करने के लिए फिर अंकों की तुलना की जाती है।
तीसरी रूपरेखा- ऐच्छिककृत विषय केवल परीक्षण पश्चात नियंत्रण समूह रूपरेखा
तीसरी रूपरेखा का मुख्य लाभ ऐच्छिकीकरण है, जो स्वतंत्र परिवर्ती के समावेशन से पहले समूहों की सांख्यिकीय समानता को सुनिश्चित करता है। तीसरी रूपरेखा परिपक्वता, इतिहास और पूर्व परीक्षण के प्रमुख प्रभावों के लिए नियंत्रण करती है क्योंकि किसी पूर्व परीक्षण का इस्तेमाल नहीं किया जाता है इसलिए परीक्षण पूर्व और X (उपचार) के मध्य कोई परस्पर सम्बन्ध नहीं हो सकता है।
चौथी रूपरेखा- ऐच्छिककृत मिलान हुए विषय सिर्फ परीक्षण पश्चात नियंत्रण समूह रूपरेखा
सामान्यतः यह तीसरी रूपरेखा के समान होती है लेकिन इसमें समतुल्य समूह पाने के लिए ऐच्छिक निर्धारण की जगह पर मिलान तकनीक का इस्तेमाल किया जाता है। विषय का मिलान एक अथवा उससे ज्यादा परिवर्ती के लिए किया जाता है जिनका मापन सुविधाजनक रूप से किया जा सकता है, जैसे IQ अथवा पढ़ने के अंक। सामान्यतः इस्तेमाल किए जाने वाले मिलान परिवर्ती वे होते हैं जिनका आश्रित परिवर्तियों के साथ आवश्यक सहसम्बन्ध होता है। इन परिवर्तियों के आधार पर विषय के जोड़े बनाए जाते हैं जिससे विपरीत सदस्य/ अंक जितना हो सके निकट आ जाए और फिर प्रत्येक जोड़े के एक सदस्य को ऐच्छिक रूप से एक उपचार और दू सरेको दूसराउपचार प्रस्तुत किया जाता है।
चौथी रूपरेखा- ऐच्छिककृत मिलान हुए विषय- सिर्फ परीक्षण पश्चात नियंत्रण समूह रूपरेखा
मिलान / मैचिंग करना उन अध्ययनों के लिए सबसे आवश्यक होता है जहाँ छोटे प्रतिदर्श का इस्तेमाल किया जाता है और जहाँ तीसरी रूपरेखा उपयुक्त नहीं होती है। साथ ही, मिलान किए गए विषय की रूपरेखा समूहों के मध्य प्रारम्भिक अंतर द्वारा परीक्षण में विचार किए जाने के लिए अंतरों की मात्रा को कम कर देते हैं। यद्यपि, मिलान को वास्तव में नियंत्रण का साधन बनने के लिए सभी संभावित विषयों का मिलान पूरा होना चाहिए और प्रत्येक जोड़े के सदस्यों का समूहों के लिए निर्धारण ऐच्छिक रूप से होना चाहिए। यदि एक अथवा उससे अधिक विषयों को निकाल दिया जाता है क्योंकि उपयुक्त मैच मिलान नहीं हो पाता तो इससे प्रतिदर्श भेद भावपूर्ण हो जाएगा। चौथी रूपरेखा का इस्तेमाल करते समय प्रत्येक विषय का ऐच्छिक निर्धारण के प्रभावित होने से पहले मिलान करना जरूरी है, ये औसत रूप से भले ही हो।
अर्द्ध-परीक्षण रूपरेखा
एक अर्द्ध-परीक्षण रूपरेखा अ-ऐच्छिकीकृत नियंत्रण समूह परीक्षण-पूर्व परीक्षण-पश्चात रूपरेखा है। अर्द्ध-परीक्षण रूपरेखा में एकमात्र अन्तर यह है कि समूह ऐच्छिकीकृत नहीं होते हैं। इसलिए इनकी तुलना करने की संभावना नहीं होती है। सच में, इसी आधार पर रूपरेखा वास्तविक परीक्षणात्मक न होकर अर्द्ध परीक्षणात्मक हो जाती है। चूँकि रूपरेखा से सम्बन्धित शेष विशेषताएँ वास्तविक परीक्षण श्रेणी की ऐच्छिकीकृत नियंत्रण समूह परीक्षण-पूर्व परीक्षण पश्चात रूपरेखा के समतुल्य रहती हैं।
तथ्यगत / कारक रूपरेखाएँ
तथ्यगत/कारक रूपरेखा में दो अथवा उससे अधिक परिवर्तियों में एकसाथ बदलाव लाया जाता है जिससे प्रत्येक परिवर्ती के आश्रित परिवर्ती पर स्वतंत्र प्रभाव और अनेक परिवर्तियों के मध्य परस्पर क्रिया के कारण प्रभावों का अध्ययन किया जा सके। तथ्यगत/कारक रूप रेखाएँ दो प्रकार की होती हैं। पहली प्रकार में,यदि एक स्वतंत्र परिवर्ती में परीक्षणात्मक रूप से बदलाव लाया जा सकता है। शोधकर्ता प्राथमिक रूप से एकल स्वतंत्र परिवर्ती के प्रभाव में रुचि रखता है लेकिन उसे दूसरे परिवर्तियों पर भी विचार करना चाहिए जो आश्रित परिवर्तियों को प्रभावित कर सकते हैं। दूसरे प्रकार की रूपरेखा में सभी स्वतंत्र परिवर्तियों में परीक्षणात्मक रूप से बदलाव लाए जा सकते हैं। तथ्यगत/कारक रूप रेखा को जटिलता के विभिन्न चरणों पर विकसित किया गया है, सबसे सरल कारक रूपरेखा 2 गुणा 2 (2*2) रूपरेखा है। दो मूल्य में दोनों स्वतंत्र परिवर्ती होते हैं।
स्तर 1 के विषयों को उपचार A और अन्य को उपचार B प्रदान किया जाता है। कुछ स्तर 2 के विषय उपचार A और अन्य उपचार B प्राप्त करते हैं। कारक रूपरेखा की विशेषता यह है कि इसमें एक परीक्षण में ही वह प्राप्त किया जा सकता है जिसके लिए अन्यथा दो अथवा उससे अधिक पृथक अध्ययनों की जरूरत होती है।
समय श्रृंखला रूपरेखा
ये परीक्षणात्मक उपचार के पूर्व और पश्चात में आश्रित परिवर्ती पर एक बार में आँकड़े पैदा करते हैं। कुछ ऐसी स्थितियाँ होती हैं जिनमें किसी विशेष घटना/प्रक्रिया अथवा उत्पाद की प्रवृत्ति में परिवर्तनों की तुलना करना जरूरी हो जाता है। उदाहरणस्वरूप, मान लेते हैं कि विद्यार्थी का समय के साथ सोच, उपलब्धि आदि के लिए व्यवहार बदल जाता है। यदि किसी संस्थान में सोच अथवा उपलब्धि में बदलाव के अध्ययन के लिए कोई विशिष्ट उपचार प्रदान किया जाता है तो उपचार किए जाने से पूर्व कुछ निश्चित अन्तरालों पर मापन द्वारा प्रवृत्ति का अध्ययन आवश्यक होता है। एक बार के पूर्व उपचार की जगह पर, उपचार दिए जाने से पूर्व परीक्षण को तीन अथवा चार बार दोहराया जाता है। इससे व्यवहार की प्रवृत्ति पर आंकड़ों का निर्माण होता हैं। इसी प्रकार उपचार दिए जाने के उपरांत एक बार के पश्चात परीक्षण की बजाय परीक्षण पश्चात् को अनेक बार अन्तरालों पर किया जाता है। इससे व्यवहार में बदलाव की प्रवृत्ति का पता लगाने के आंकड़ों की प्राप्ति होती हैं। चूँकि समय श्रृंखला रूपरेखा में परीक्षणपूर्व और परीक्षण पश्चात् परीक्षणों दोनों का इस्तेमाल किया जाता है, इसलिए आश्रित परिवर्ती पर उपचार के प्रभाव का परीक्षण प्रवृत्तियों की तुलना से किया जाता है। इसे निम्नरूप से प्रस्तुत किया जा सकता है -
Y1Y2Y3Y4Y5Y6Y7Y8
यदि नियंत्रण समूहों को जोड़ दें और इसी समय श्रृंखला मापन को नियंत्रण समूहों के उपचार के बिना दोहराएँ तो ये नियंत्रण समूह समय श्रृंखला रूपरेखाके रूप में बन जाते हैं जिसे निम्नलिखित प्रकार से प्रदर्शित किया जाता है -
समूह -
E Y1Y2Y3Y4Y5Y6Y7Y8
C Y1Y2Y3Y4Y5Y6Y7Y8
वार्तालाप में शामिल हों